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Abstract: Natural gas recovery has increased with the production from unconventional
reservoirs with low absolute permeability. In these reservoirs, production is favored, for
example, by the use of horizontal wells and the gas-phase slippage effect. This work per-
forms a numerical simulation of two-phase isothermal water-gas flow, accounting for the
impact of gas slip and permeability variation as a function of the stress change acting
on the porous matrix. The governing equations are discretized using the Finite Volume
Method. The obtained algebraic equation systems are linearized and solved by applying
a Picard-Newton solution strategy, an operator splitting method, and the iterative pre-
conditioned Stabilized Biconjugate Gradient method. The results are presented in terms
of instantaneous gas flow rate and recovered gas volume, considering several production
scenarios for the prescribed well pressure. In conclusion, the results showed that it was
possible to capture the incorporated physical effects, with slippage favoring production
and the change due to the stress effect leading to a decrease in apparent permeability
resulting from the pressure drop caused by production.
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1 Introduction

The increasing global energy demand has driven the ex-
ploration and production of unconventional oil and gas
sources [4]. Among the significant available resources are
gas reservoirs characterized by low permeability, often
referred to as tight gas reservoirs. Production from these
reservoirs presents unique challenges due to their inher-
ent low permeability and porosity, as well as their struc-
tural complexity [1, 17]. To overcome these difficulties
and make production viable, advanced techniques like
hydraulic fracturing and horizontal drilling are widely
employed [8]. Furthermore, multiphase flow introduces
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additional complications [21], such as production limita-
tions caused by the presence of water, which can occupy
pore spaces and impede gas flow [5].

According to Xu et al. [23], the presence of water
in pores and fractures significantly interferes with gas
mobility in a two-phase flow context. Typically, numer-
ical methods are utilized to study flow dynamics and
predict production. The most sophisticated models inte-
grate elements such as gas adsorption on the rock surface
and incorporate mechanisms that account for gas slip-
page. Moreover, the injection of fluids during fracturing
can alter reservoir properties, potentially creating low-
permeability zones near the wellbore [15].

Several mechanisms in physical-mathematical mod-
eling can explain the low water recovery often observed
during production in these reservoirs. These include wa-
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ter retention within the fracture network and water im-
bibition associated with osmotic and capillary pressure.
As highlighted by He et al. [15], these factors hinder wa-
ter flow, a phenomenon that can be effectively modeled
using a modified version of Darcy’s law for low-velocity
flows. Consequently, the authors adapted Darcy’s law to
describe water transport and employed another version
adjusted for gas transport, specifically considering slip-
page mechanisms and free molecular flow. The Klinken-
berg effect, also known as gas slippage, occurs in low-
permeability media where gas molecules achieve higher
velocities near pore walls. This phenomenon is particu-
larly relevant under low-pressure conditions and results
in an effective (apparent) permeability that is greater
than the absolute permeability [18].

On the other hand, effective stress can significantly
impact the permeability of porous media. Compression
of the porous medium, caused by increased pressure, can
restrict fluid flow. This necessitates incorporating a re-
lationship that describes permeability as a function of
stress and deformation [22]. These effects become espe-
cially important in horizontal wells with hydraulic frac-
turing, where stress redistribution can alter flow behav-
ior within open fractures. In contrast, conventional reser-
voirs typically trap hydrocarbons in porous and perme-
able rocks, generally allowing for natural migration and
facilitated extraction.

Indeed, horizontal drilling represents an essential
technology in the exploitation of unconventional reser-
voirs. It has radically transformed the oil and gas indus-
try by enabling production from geological formations
with inherently low permeability [2]. This technique in-
volves diverting the well trajectory from a vertical to a
horizontal or near-horizontal orientation relative to the
main reservoir bedding, thereby maximizing the contact
area between the well and the producing formation. Ini-
tially, the well is drilled vertically until it reaches a depth
close to the target layer. Subsequently, a directional de-
viation is performed using specialized tools to change the
well’s trajectory. From this point, drilling continues hor-
izontally along the producing layer for hundreds or even
thousands of meters, significantly expanding the hydro-
carbon drainage area.

In this work, we study two-phase water-gas flow dur-
ing production in a low-permeability reservoir utilizing a
horizontal well and numerical reservoir simulation tech-
niques. Our primary contribution lies in addressing this
challenging problem by proposing a novel solution ap-
proach: we employ the Picard-Newton method to accu-
rately model situations where both slippage and stress
effects significantly influence the apparent permeability.

2 Physical-mathematical modeling

Considering the Cartesian coordinate system, the mass
balance for flow in porous media yields [7],

∂

∂t
(ϕρlSl) + ∇ · (ρlvl) − q̇ml = 0, (1)

where ϕ is the porosity, and ρl, Sl, vl, and q̇ml are, re-
spectively, the specific mass, saturation, apparent veloc-
ity, and source term (mass per unit time per unit volume)
for phase l.

For multiphase flows, the classical Darcy’s law re-
quires modification to account for the flow resistance
that a given phase exerts on the others [11]. Further-
more, Darcy’s law can be modified to incorporate effects
such as slippage and the influence of effective stress.

Slippage, also known as the Klinkenberg effect, oc-
curs when the pore size is comparable to the mean free
path of gas molecules, with the effect being more no-
ticeable at reduced pressures. The permeability value in
these cases must be corrected, with the first model em-
ployed to capture this phenomenon being [18]

kag =
(

1 + b

p

)
k, (2)

where kag is the apparent gas permeability, k the intrin-
sic permeability of the porous medium, p the gas pres-
sure, and b the Klinkenberg factor.

On the other hand, in certain situations, permeability
can be sensitive to variations in stress, which influences
fluid flow within these formations. This phenomenon is
known as the effective stress effect on permeability and
can significantly impact gas production [14]. A simplified
model used in the modeling of this effect is given by [25]

k = e−γ(p0−p)k0, (3)

where γ is the permeability modulus, dependent on the
mineral composition and mechanical characteristics of
the rock [24], p0 is the initial pressure, and k0 repre-
sents the initial permeability (tensor considered diagonal
here).

The concept of apparent permeability will be adopted
for both phases. For the gas phase, kag takes into account
the effects of slippage and effective stress, while for the
water phase, kaw considers only the effective stress effect.
Thus, the modified Darcy’s law is considered here in the
form

vl = −krl
µl

kal (∇pl − λl∇z) (4)

where kal is the apparent permeability tensor, pl, µl, and
krl are, respectively, the pressure, viscosity, and relative
permeability of phase l, λl = ρlg, and ∇z is the depth
gradient, with g being the magnitude of gravitational
acceleration.

Substituting Equation (4) into Equation (1),

∇ ·
[
ρlkrl
µl

kal (∇pl − λl∇z)
]

= ∂

∂t
(ϕρlSl) − q̇ml (5)

for each phase l, where w represents the wetting phase
(water), and n designates the non-wetting phase (gas).

Expressing the specific mass of the phase in terms of
the Formation Volume Factor (FVF), Equation (5) can
be rewritten as [13]

∇ ·
[
krl
µlBl

kal (∇pl − λl∇z)
]

= ∂

∂t

(
ϕSl
Bl

)
− q̇scl (6)
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where Bl is the FVF of phase l and q̇scl = q̇ml/ρscl, with
q̇scl being a volumetric flow rate source term under stan-
dard conditions and ρscl the specific mass under standard
conditions of phase l.

Assuming that the medium is fully saturated, we
have [11],

Sw + Sg = 1, (7)

where Sw is the saturation of the wetting phase and Sg
is the saturation of the non-wetting phase.

Now, from the equation that provides the capillary
pressure as a function of the phase pressures [7],

pc = pg − pw, (8)

the water pressure can be written in terms of the gas
pressure and the capillary pressure.

From Equation (6), Sg = 1 − Sw, and pw = pg − pc,
we obtain for the gas phase

∇ ·
[
krg

µgBg
kag

(
∇pg − λg∇z

)]
= ∂

∂t

[
ϕ(1 − Sw)

Bg

]

− q̇scg (9)

and, for the water phase,

∇ ·
[
krw

µwBw
kaw

(
∇pg − ∇pc − λw∇z

)]
= ∂

∂t

(
ϕSw

Bw

)

− q̇scw, (10)

where it was considered that w = w (water) and n = g
(gas).

In this work, the modified Corey model is employed
for the wetting phase [11], such that

krw(Sw) = krwmax

(
Sw − Siw

1 − Siw − Sgrw

)ew

(11)

and, for the non-wetting phase,

krg(Sw) = krgmax

(
1 − Sw − Sgrw

1 − Siw − Sgrw

)eow

, (12)

where Sw and Siw represent, in this order, the saturation
and irreducible saturation of the wetting phase, Sgrw is
the residual saturation of the non-wetting phase, krwmax
is the maximum water saturation, krgmax is the maxi-
mum gas saturation, ew and eow are the Corey exponents
for the water and gas phases, respectively.

The adopted capillary pressure curve originates from
models based on power laws [12],

pc(Sw) = pcmax

(
1 − Sw − Sgrw

1 − Siw − Sgrw

)epc
, (13)

where the maximum value of the curve, pcmax
(Siw), and

the exponent epc must be determined from experiments
or through field data.

The initial condition is defined for an arbitrary time
t0. For example, for the variables pg = p(x, y, z, t) and
Sw = S(x, y, z, t), the initial condition is imposed in the
form [7]:

p(x, y, z, t0) = p0(x, y, z) in the entire Ω (14)

and

S(x, y, z, t0) = S0(x, y, z) in the entire Ω, (15)

in which S0 represents the saturation throughout the
domain Ω at the initial time.

In petroleum reservoir simulations, it is common
to define initial pressures at a given reference depth.
Then, the hydrostatic gradient and capillary effects are
used to determine the initial values at different reservoir
depths [11, 13]. Regarding the boundary conditions, in
this work, no-flow conditions are imposed at the reser-
voir boundaries. Finally, more details on the calculations
associated with fluid and rock properties can be found
in [13].

3 Numerical Solution Methodology

We now proceed to the presentation of the numerical
solution methodology employed in this work, which in-
cludes the use of the Finite Volume Method, operator
splitting, linearizations, a well-reservoir coupling tech-
nique, and an iterative method for solving linear systems.

3.1 Discretization

In the Finite Volume Method, the non-linear partial dif-
ferential equations (PDEs) that govern the flow are first
integrated in space and time over a finite volume. This
procedure ensures that mass and fluxes are conserved in
each finite volume and over the entire domain [6]. In this
method, the solution domain is divided into finite vol-
umes (cells or blocks) with known, not necessarily equal,
dimensions. Within this framework, the average values
of pressure and saturation are determined at the centers
of the blocks. In the three-dimensional case, each finite
volume is represented by a parallelepiped with lengths
∆x, ∆y, and ∆z, in that order, such that

nx∑
i=1

∆xi = Lx,

ny∑
j=1

∆yj = Ly,

nz∑
k=1

∆zk = Lz, (16)

where Lx, Ly, and Lz represent the spatial dimensions
of the reservoir, as illustrated in Figure 1. The reservoir
is partitioned using a grid composed of nx, ny, and nz
volumes in the directions of the x, y, and z axes, respec-
tively. The indices i, j, and k represent the centers of the
blocks in the x, y, and z directions, and their faces are
identified by i± 1/2, j, k, i, j ± 1/2, k, and i, j, k ± 1/2.
The commonly used compact notation [13] was adopted,
in which the faces of the finite volumes are identified by
lowercase letters: (i− 1/2, j, k) = w, (i+ 1/2, j, k) = e,
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(i, j − 1/2, k) = n, (i, j + 1/2, k) = s, (i, j, k − 1/2) = a,
and (i, j, k + 1/2) = b (Figure 2). In the computational
grid, the center of block P has coordinates (i, j, k), and
for neighboring volumes, we have (i− 1, j, k) = W , (i+
1, j, k) = E, (i, j + 1, k) = N , (i, j − 1, k) = S, (i, j, k −
1) = B, and (i, j, k + 1) = A.

Figure 1: Three-dimensional grid.

Figure 2: Finite Volume.

The discretization of Equations (9) and (10) begins
with an integration over a control volume, as illustrated
in Figure 2. Considering the standard development and
employing three-point centered difference approxima-
tions, their spatially discretized forms are obtained [13]

∂

∂t

[
ϕ(1 − Sw)

Bg

]
P

V
P

= ∆
(
Tg∆pg

)
P

− ∆
(
Tgλg∆z

)
P

+ qscgP
(17)

and

∂

∂t

(
ϕSw

Bw

)
P

V
P

= ∆
(
Tw∆pg

)
P

− ∆ (Tw∆pc)
P

− ∆ (Twλw∆z)
P

+ qscwP
, (18)

where V
P

= ∆x
P

∆y
P

∆z
P
, qsclP = q̇sclP VP

, and the op-
erator ∆ (ξ∆η)

P
was used [11]

∆ (ξ∆η)
P

≡ ξxw (η
W

− η
P

) + ξxe (η
E

− η
P

)

+ ξyn
(η

N
− η

P
) + ξys

(η
S

− η
P

)

+ ξza
(η

A
− η

P
) + ξzb

(η
B

− η
P

) , (19)

and, for two-phase flow, the transmissibilities Tlxf
[11]

were introduced into Equations (17) and (18):

Tlxf
≡
(
kalxAxkrl
µlBl∆x

)
f

l = g, w, (20)

for f = w or f = e. Analogous expressions for transmis-
sibilities can be defined for the y and z directions.

Next, the accumulation terms of Equations (9)
and (10) are considered,

∂

∂t

[
ϕ(1 − Sw)

Bg

]
=
[
ϕ
d

dpg

(
1
Bg

)]
(1 − Sw)

∂pg

∂t

+
[

1
Bg

dϕ

dpg

]
(1 − Sw)

∂pg

∂t

−
(
ϕ

Bg

)
∂Sw

∂t
(21)

and
∂

∂t

(
ϕSw

Bw

)
=
[
ϕ
d

dpw

(
1
Bw

)
+ 1
Bw

dϕ

dpw

]
Sw
∂pw

∂t

+
(
ϕ

Bw

)
∂Sw

∂t
. (22)

Disregarding the variation of capillary pressure with
time [13], ∂pc/∂t = 0, we have ∂pw/∂t ≈ ∂pg/∂t; there-
fore,

∂

∂t

[
ϕ(1 − Sw)

Bg

]
=
[
ϕ

(
1
Bg

)′

+ ϕ′

Bg

]
(1 − Sw)

∂pg

∂t

−
(
ϕ

Bg

)
∂Sw

∂t
(23)

and

∂

∂t

(
ϕSw

Bw

)
=
[
ϕ

(
1
Bw

)′

+ ϕ′

Bw

]
Sw
∂pg

∂t

+
(
ϕ

Bw

)
∂Sw

∂t
, (24)
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where ϕ′ = dϕ

dpl
and

(
1
Bl

)′

= d

dpl

(
1
Bl

)
, l = g, w [11].

Substituting Equations (23) and (24) into the right-
hand side of Equations (17) and (18) and integrating
them in time, we obtain

∆
(
Tg∆pg

)n+1
P

− ∆
(
Tgλg∆z

)n+1
P

= Cgp∆tpg + Cgs∆tSw − qn+1
scgP

(25)

and

∆
(
Tw∆pg

)n+1
P

− ∆ (Tw∆pc)n+1
P

− ∆ (Twλw∆z)n+1
P

= Cwp∆tpg + Cws∆tSw − qn+1
scwP

(26)

where the coefficients C are given by

Cgp = V
P

∆t

{[
ϕn+1

P

(
1
Bg

)′

P

+
ϕ′

P

BngP

]
(1 − SnwP

)
}
, (27)

Cgs = −V
P

∆t

(
ϕn+1

P

Bn+1
gP

)
, (28)

Cwp = V
P

∆t

{[
ϕn+1

P

(
1
Bw

)′

P

+
ϕ′

P

BnwP

]
SnwP

}
, (29)

and

Cws = V
P

∆t

(
ϕn+1

P

Bn+1
wP

)
, (30)

and the operator ∆tφ = φn+1
P

− φn
P

was used.
In Equations (27), (28), (29), and (30), the super-

scripts n+ 1 and n indicate the future and current time
instants, respectively. Additionally, ∆t = tn+1 − tn, with
ϕ, Sw, and Bl evaluated at times n or n+ 1 to obtain
a conservative approximation in the temporal integra-
tion [11]. Equations (25) and (26) therefore result in a
fully implicit formulation.

It is assumed that the rocks have a small and constant
compressibility. Thus, we have [11]

ϕ = ϕ0 [1 + cϕ(pg − p0)
]
, (31)

where cϕ is the rock compressibility and ϕ0 is the poros-
ity evaluated at the reference pressure p0. The water
phase is considered slightly compressible, such that

Bw = B0
w

1 + cw(pw − p0) , (32)

where cw is the water compressibility and B0
w is the FVF

of water at the reference pressure p0. From the definition
of the FVF and the real gas law, Bg can be written as [12]

Bg = psc
Tsc

Z
T

pg
, (33)

where psc and Tsc are, respectively, the pressure and
temperature at standard conditions, and Z is the com-
pressibility factor.

From Equation (31), it is possible to write

ϕ′ = cϕϕ
0. (34)

Thus, considering Equations (32) and (33),(
1
Bw

)′

= cw

Bw
, (35)

(
1
Bg

)′

= 1
Bg

(
1
pg

− 1
Z

dZ

dpg

)
. (36)

Equations (25) and (26) evaluated at the grid vol-
umes form a coupled and non-linear system of algebraic
equations. The implementation of the initial and bound-
ary conditions follows the procedures adopted in [13].

Let itn−1 be the number of iterations required for
the convergence of the solution at the previous time step
∆tn−1. As proposed by [19] and adapted by [13], an em-
pirical criterion is used for the calculation of ∆t, given
by

∆tn =


ndecr∆tn−1 if itn−1 > itdecr,

nincr∆tn−1 if itn−1 ≤ itincr,

∆tn−1 otherwise,

(37)

where ndecr and nincr are the decrease and increase rates
of the time step, with the iteration number limits es-
tablished by itdecr and itincr (itincr < itdecr). An upper
limit is also imposed on the time step, ∆tn ≤ ∆tmax. If
the simulation does not converge, the step is reduced,
allowing the continuation of the numerical simulation ex-
ecution.

3.2 Well-Reservoir Coupling

In the adopted well-reservoir coupling model, a hor-
izontal well with radius rwf is considered, and fric-
tional losses and inertial effects within the well are ne-
glected [11]. For each finite volume c traversed by the
well, with c ∈ ψwf , the flow rates of the non-wetting and
wetting phases are expressed by [3]:

qscgc
= −Jgc

(
pgc

− pwfc

)
(38)

and

qscwc
= −Jwc

(
pgc

− pcc
− pwfc

)
, (39)

where Jl (l = g, w) represents the productivity index [3]
and

Jlc = Gwfc

(
krlc
µlcBlc

)
. (40)
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For horizontal wells (parallel to the x direction) [3]

Gwfc
=

2π
√
kalzckalyc∆xc[

1 −
(
rwf
reqc

)2
]

ln
(
reqc

rwf

) (41)

where req is the equivalent radius given by

reqc
=
√

∆zc∆yc
π

exp (−0, 5). (42)

Equations (38) and (39) apply to each block c that
contains a section of the well (c ∈ ψwf ), and the total
flow rate for each phase is the sum of the flow rates of
all layers [11],

qscgsp
= −

∑
c∈ψwf

Jgc

(
pgc

− pwfc

)
(43)

and

qscwsp
= −

∑
c∈ψwf

Jwc

(
pgc

− pcc
− pwfc

)
. (44)

The total production flow rate is obtained by sum-
ming the flow rates of all layers, considering both
phases [11],

qscsp
= −

∑
c∈ψwf

Jgc

(
pgc

− pwfc

)

−
∑
c∈ψwf

Jwc

(
pgc

− pcc
− pwfc

)
, (45)

with a production condition in terms of prescribed pres-
sure along the producing well, pwf , being adopted in this
work.

3.3 Linearizations

In this work, linearization techniques are employed, and
the transmissibilities at the interfaces e, s, and b are
defined, for example, for the x direction, as

Tn+1
lxe

=
(
kalxAx

∆x

)
e

(
1

µlBl

)n+1

e

kn+1
rle

, (46)

for l = g, w, with analogous forms for the y and z direc-
tions. Similarly, their expressions at the w, n, and a faces
can be written. They can also be represented as

Tn+1
lf

= G
f
Fn+1
pf

Fn+1
Sf

(47)

where the term G
f

depends on fluid, rock, and geomet-
ric properties, Fn+1

pf
depends on pressure, and Fn+1

Sf
de-

pends on saturation.
The terms Fn+1

pf
and Fn+1

Sf
are taken to exemplify

how the Picard and Newton-Raphson linearization meth-
ods are implemented.

We begin with the Picard iteration, where these
terms are evaluated at time n+ 1, but at the previous
iterative level v. As an example, we have

Fn+1
pe

≈ Fn+1,v
pe

(48)

and

Fn+1
Se

≈ Fn+1,v
Se

, (49)

and the method is conditionally stable [11], with a simi-
lar procedure used for the other interfaces.

When the Newton-Raphson method is used, the term
at iteration v + 1 is approximated from its value evalu-
ated at the preceding iteration v [13], yielding, for ex-
ample,

Fn+1
pe

≈ Fn+1,v+1
pe

≈ Fn+1,v
pe

+ ∂Fpe

∂pP

∣∣∣∣∣
n+1,v

δpn+1,v+1
nP

+ ∂Fpe

∂pE

∣∣∣∣∣
n+1,v

δpn+1,v+1
nE

(50)

and

Fn+1
Se

≈ Fn+1,v+1
Se

≈ Fn+1,v
Se

+ ∂Fpe

∂SP

∣∣∣∣∣
n+1,v

δSn+1,v+1
wP

+ ∂Fpe

∂SE

∣∣∣∣∣
n+1,v

δSn+1,v+1
wE

, (51)

with the properties at the e face determined based on
the known values at nodes P and E. For the term Fn+1

Se
,

the first-order upwind method is used. This method is
unconditionally stable [11]. Regarding the accumulation
terms, the non-linearities are considered weak (with the
exception of gas flow) and are treated using the Picard
method. On the other hand, the source terms require a
linearization of the type employed for the transmissibil-
ities.

3.4 Approximation at Finite Volume Faces

Since transmissibilities must be evaluated at the faces
of the finite volumes and pressures and saturations are
calculated at the center of the finite volumes, an inter-
polation must be employed in the calculation of the co-
efficients at the interfaces. Usually, arithmetic averages
(in the case of volumes with the same dimension for the
direction under analysis) are used for the pressure terms
Fpf

, ensuring a second-order approximation [11]. For ex-
ample, we have

Fpe =
(

1
µlBl

)
e

= 1
2

[(
1

µlBl

)
E

+
(

1
µlBl

)
P

]
. (52)
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The first-order upwind method is used to prevent
possible instabilities associated with centered differ-
ences [11] with respect to the saturation-dependent
terms, FSf

. For example, we use

krle =

krlP if ve ≥ 0,

krlE if ve < 0,
(53)

where ve represents the velocity at the e face.
For the calculation of the term Gf , a harmonic aver-

age is used for the computation of the apparent perme-
ability, based on what is generally applied for absolute
permeability [11]. Considering the area perpendicular to
the flow as constant, the geometric term at the e face
can be expressed as

Gxe
=
(
kalxAx

∆x

)
e

= kalxeAxe

∆xe
, (54)

where

kalxe
= kalxP

kalxE
(∆xP + ∆xE)

kalxP
∆xE + kalxE

∆xP
. (55)

Analogously, interpolations are performed at the w faces
for the x direction, and at the n, s, a, and b faces, taking
into account the y and z axes directions.

3.5 Hybrid Method

In the present work, the Hybrid Method described in [13]
is used. Its objective is to improve numerical stability by
implicitly solving, in separate steps, the algebraic sys-
tems associated with pressure and saturation. A fully
implicit linearization for the wetting phase is employed
via the Newton method, using an operator splitting tech-
nique [9, 16].

Similar to the Implicit Pressure Explicit Saturation
(IMPES) method [11], the pressure equation for each
volume can be obtained by combining Equations (25)
and (26) such that the term ∆tSw is eliminated. This
can be done by multiplying Equation (25) by Bn+1

gP
,

Equation (26) by Bn+1
wP

, and adding them, noting that
Bn+1

gP
Cgs +Bn+1

wP
Cws = 0. Thus, the pressure equation

can be written as [11]

Bn+1
gP

∆
(
Tg∆pg

)n+1
P

+Bn+1
wP

∆
(
Tw∆pg

)n+1
P

−Bn+1
wP

∆ (Tw∆pc)n+1
P

−Bn+1
gP

∆
(
Tgλg∆Z

)n+1
P

+Bn+1
wP

∆ (Twλw∆Z)n+1
P

=(Bn+1
gP

Cgp +Bn+1
wP

Cwp)∆tpg

−(Bn+1
gP

qn+1
scgP

+Bn+1
wP

qn+1
scwP

), (56)

when calculating the pressures in the porous medium.
Once determined at the current time step (n+ 1) and it-
eration (v + 1), they cease to be unknowns when solving
the wetting phase equation, making saturation the only
variable to be computed. The fully implicit linearization,
in terms of the wetting phase saturation, results in a sys-
tem of equations that is solved by the Newton-Raphson
method. This system can be represented in the following
matrix form [13]:

Jn+1,v
w δSn+1,v+1

w = −Rn+1,v
w , (57)

where Jn+1,v
w represents the Jacobian matrix,

δSn+1,v+1
w = Sn+1,v+1

w − Sn+1,v
w , and the vector contain-

ing the unknowns is

Sw = (Sw1 , Sw2 , Sw3 , ..., SwN
)T , (58)

while for the residual vector Rw we have

Rw = (Rw1 , Rw2 , Rw3 , ..., RwN
)T , (59)

where n = 1, 2, 3, ...N , for a computational grid with N
volumes.

After solving the system of linear algebraic equations,
the new saturations can be calculated using

Sn+1,v+1
w = Sn+1,v

w + δSn+1,v+1
w , (60)

applicable to each cell of the computational domain.
For each volume in the grid, using the Newton

method, we have [13]

−Rn+1,v
wP

= ∂RwP

∂SwA

∣∣∣∣∣
n+1,v

δSn+1,v+1
wA

+ ∂RwP

∂SwN

∣∣∣∣∣
n+1,v

δSn+1,v+1
wN

+ ∂RwP

∂SwW

∣∣∣∣∣
n+1,v

δSn+1,v+1
wW

+ ∂RwP

∂SwP

∣∣∣∣∣
n+1,v

δSn+1,v+1
wP

+ ∂RwP

∂SwE

∣∣∣∣∣
n+1,v

δSn+1,v+1
wE

+ ∂RwP

∂SwS

∣∣∣∣∣
n+1,v

δSn+1,v+1
wS

+ ∂RwP

∂SwB

∣∣∣∣∣
n+1,v

δSn+1,v+1
wB

(61)
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where

Rn+1,v
wP

= −Tn+1,v
wza

∆Φn+1,v
wzA

− Tn+1,v
wyn

∆Φn+1,v
wyN

− Tn+1,v
wxw

∆Φn+1,v
wxW

− Tn+1,v
wxe

∆Φn+1,v
wxE

− Tn+1,v
wys

∆Φn+1,v
wyS

− Tn+1,v
wzb

∆Φn+1,v
wzB

+ Cwp(pn+1,v
gP

− pngP
) + Cws(Sn+1,v

wP
− SnwP

)

− qn+1,v
scwP

(62)

and, for example,

∆Φn+1,v
wzA

≡
(
pn+1,v+1

wA
− pn+1,v+1

wP

)
−
(
pn+1,v
cA

− pn+1,v
cP

)
− λn+1,v

ga
(zA − zP ) , (63)

with similar definitions employed for the other
terms [13].

The derivatives of the residuals with respect to satu-
ration are obtained consistently with those that can be
obtained by the Newton-Raphson method. The implicit
calculation of the pressure field in the porous medium is
performed in a first step, followed by an equally implicit
calculation of the saturation field, using a fully implicit
linearization.

This iterative process is conducted until convergence
is achieved, following the established criteria. The sys-
tems of algebraic equations are solved by applying the
Biconjugate Gradient Stabilized method using the ILU-
type preconditioner [13].

4 Numerical Results

In this work, simulations were carried out considering:
Darcy-type flow (Case 1); non-Darcy-type flow with the
Klinkenberg effect and correction due to effective stress
(Case 2); non-Darcy-type flow with the Klinkenberg ef-
fect (Case 3); and non-Darcy-type flow with correction
due to effective stress (Case 4).

For the simulations, a basic set of parameters was de-
fined, based on those used by [13] for the study of water-
gas flow in a conventional reservoir with production via
a vertical well. The parameters necessary for including
slippage and effective stress effects were chosen after re-
search in works dedicated to the study of unconventional
low-permeability reservoirs, as was done for the horizon-
tal well configuration.

The general parameters for the standard case, includ-
ing fluid and rock properties and the geometric charac-
teristics of the reservoir, can be found in Table 1. In this
table, gcap is the location of the bottom of the gas cap,
measured from the top of the reservoir.

For a mesh refinement study, four distinct compu-
tational meshes were employed to determine the most

Table 1 General parameters.

Parameter Value Unit
b 1,000 psi
B0
w 1.022 –
cϕ 4×10−6 psi−1

cw 1×10−5 psi−1

gcap 90 ft
k0 1×10−7 Darcy

krwmax
0.4 –

krgmax
0.9 –

Lx = Ly 1,000 ft
Lz 180 ft
Lw 500 ft
psc 14.696 psi
pwf 2,000 psi

p0 = p0 4×103 psi
rwf 0.1875 ft
Sgw 0.15 –
Sw0 0.20 –
T 609.67 R
Tsc 519.67 R
γ 1×10−4 psi−1

ϕ0 0.07 –

Table 2 Meshes.

Mesh nx ny nz
1 64 65 22
2 128 129 42
3 256 257 82
4 512 513 162

suitable one and to verify the numerical convergence of
the method [11]. The mesh was refined along all three
spatial directions, and the physical characteristics of the
porous medium and the operational conditions defined in
the reference case were preserved. This study is essential
for reducing errors associated with discretization and for
ensuring the accuracy of the results. Table 2 contains, for
the computational grids employed, the respective num-
bers of volumes in the x, y, and z directions, denoted as
nx, ny, and nz.

Figures 3 and 4 show the results of this evaluation for
Case 2, displaying the gas flow rate and cumulative pro-
duction curves for each configuration. As the meshes are
refined, the flow rate and cumulative production curves
become increasingly close to each other, with the ex-
ception of the initial region. It should be noted that
the adopted well-reservoir coupling technique [20] has
an artifact called numerical storage, which appears as
plateaus when simulations are performed for a prescribed
flow rate and when studying plots of wellbore pressure
as function of time, with the time axis on a logarithmic
scale. Thus, the results obtained here for the initial pe-
riods are under the influence of this artifact, which is
reduced by mesh refinement and is dependent on fluid
properties, rock properties, and geometry [10].
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Figure 3: Mesh refinement (Case 2): gas flow rate.
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Figure 4: Mesh refinement (Case 2): cumulative gas produc-
tion.

The comparison of the results revealed that Mesh 3
offers a suitable balance between accuracy and compu-
tational cost. This choice was substantiated by the over-
lap of the curves obtained for the more refined meshes
(Mesh 3 and Mesh 4), indicating that the results ob-
tained with Mesh 3 are satisfactory. Furthermore, the
utilization of Mesh 3 leads to a reduction in simulation
time compared to Mesh 4, rendering it the most effective
choice for this study. Consequently, Mesh 3 was employed
as the standard mesh in subsequent simulations.

Figures 5 and 6 present a comparison between the
flow rate and the cumulative gas production for Cases 1
and 2 over time. In Case 1, only the flow governed by
the classical Darcy’s Law is considered, whereas Case 2
includes the effects of gas slippage and permeability cor-
rection due to effective stress variation.

This comparison allows for the evaluation of how
these phenomena influence two-phase flow in low-

permeability reservoirs. The results demonstrated that,
in Case 2, the gas flow rate is higher compared to Case 1,
leading to greater cumulative production over time. This
behavior is primarily attributed to the Klinkenberg ef-
fect, which elevates the apparent permeability in low-
pressure regions, facilitating gas flow through the rock
micropores. Conversely, the correction resulting from
rock deformation has an opposing effect, decreasing the
effective permeability as the reservoir pressure declines.
This is caused by the redistribution of mechanical stress,
which results in a reduction of the gas transport capac-
ity within the pores, with a consequent drop in reser-
voir pressure. Nevertheless, the combination of these two
effects shows that the positive impact of gas slippage
largely compensates for the negative impact of the stress-
dependent correction, resulting in an overall superior
performance in Case 2 in terms of both gas flow rate and
cumulative production.
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Figure 5: Comparison between Darcy and Non-Darcy cases
(including all effects): gas flow rate.

The variation of gas flow rate over time is illustrated
in Figure 7, while Figure 8 presents the cumulative gas
production, in a comparative analysis of results obtained
for Cases 1, 2, 3, and 4. In Case 3, a significant increase
in gas flow rate is observed compared to the other cases,
exhibiting the highest production. This is attributed to
the higher apparent permeability values characteristic
of low-permeability gas reservoirs when the Klinkenberg
effect is influential. This increase in flow rate directly re-
flects the enhanced cumulative production. Conversely,
Case 4 shows a significant reduction in both flow rate
and cumulative production due to the stress-dependent
correction effect, which diminishes the transport capac-
ity within the pores resulting from reservoir pressure
decline. Thus, the adverse impact of this effect in low-
permeability reservoirs is evident.

Referring again to Figures 7 and 8, Case 2, which
incorporates all considered effects, exhibits the second
highest gas flow rate and cumulative production. De-
spite the detrimental influence of stress-dependent per-
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Figure 6: Comparison between Darcy and Non-Darcy cases
(including all effects): cumulative gas production.
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Figure 7: Comparison of all cases: gas flow rate.

meability reduction, the beneficial impact of gas slip-
page largely counteracts this decrease. Consequently,
with respect to both flow rate and cumulative produc-
tion, Case 2 is surpassed only by Case 3, where this
negative stress-dependent impact is absent.

Figures 9 and 10 illustrate the impact of the Klinken-
berg effect on gas production across three scenarios:
b=0 psi (Darcy flow), b=500 psi (moderate slippage), and
b=1,000 psi (base case). The values of this parameter
reflect the magnitude of gas slippage’s influence within
the reservoir, directly affecting the apparent permeabil-
ity. When b=0 psi, mass flow occurs without slippage,
resulting in the lowest gas flow rate and cumulative pro-
duction among the analyzed scenarios.

Further examining Figures 9 and 10, the scenario
with b=500 psi demonstrates a moderate Klinkenberg ef-
fect across the evaluated cases, resulting in an apparent
permeability that exceeds that observed in Darcy flow. A
noticeable increase in gas flow rate is observed, with the
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Figure 8: Comparison of all cases: cumulative gas production.

slippage effect being more pronounced in regions of lower
pressure (near the wellbore). Consequently, the cumu-
lative production experiences a significant enhancement
over time, highlighting the positive impact of slippage on
improving production efficiency under low-pressure con-
ditions. Finally, for b=1,000 psi (base case), a greater in-
tensity of the slippage effect is present, causing the most
substantial increase in apparent permeability. This con-
dition further enhances gas transport and, consequently,
leads to the highest gas flow rate and cumulative pro-
duction over time.
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Figure 9: Impact of b variation on the Klinkenberg effect: gas
flow rate.

The impact of the coefficient γ, present in Equa-
tion(3), on gas flow rate and cumulative production is
illustrated in Figures 11 and 12, respectively. This coeffi-
cient influences the stress-induced changes in the matrix
permeability values. For γ=0 psi−1, the case of flow gov-
erned by the original Darcy’s Law is observed. With no
compaction of the porous matrix, the absolute perme-
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Figure 10: Impact of b variation on the Klinkenberg effect:
cumulative gas production.

ability remains constant over time, irrespective of the
reservoir pressure. A higher gas flow rate and cumula-
tive production are observed, as there is no reduction
in the transport capacity through the pores due to rock
compaction.
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Figure 11: Influence of γ on the stress-induced deformation
effect: gas flow rate.

As γ increases, the negative effects of matrix com-
paction become more pronounced. For the reference case
(γ=0.0001 psi−1), a moderate reduction in absolute per-
meability occurs, resulting in a comparatively small de-
crease in gas flow rate and cumulative production. How-
ever, for γ=0.0005 psi−1, the effects of compaction inten-
sify, leading to a significant reduction in apparent per-
meability and consequently a sharp decline in gas flow
rate and substantially lower cumulative production.

Moving on, the impact of horizontal well length was
investigated, with the results presented in Figures 13
and 14. For Lw=400 ft, the limited contact area con-

✵ ✶✵ ✷✵ ✸✵ ✹✵ ✺✵ ✻✵ ✼✵ ✽✵ ✾✵

✵

✶

✷

✸

✹

✺

✻

✁✶✵�

t ✂✄☎

●
♣
✆
✝
✞
✟✠

✌✡☛ ☞✍✎✏✑ ✌✡☛✒☛☛☛✓ ☞✍✎✏✑ ✌✡☛✒☛☛☛✔ ☞✍✎✏✑

Figure 12: Influence of γ on the stress-induced deformation
effect: cumulative gas production.

siderably reduces the capacity of fluids to flow from the
rock to the wellbore. Consequently, the gas flow rate
is lower, directly reflecting a reduced cumulative pro-
duction. In the base case, Lw=500 ft, an improvement
in both gas flow rate and cumulative production is ob-
served. The increased well length allows for a larger con-
tact area with the matrix, enhancing the drainage of gas
present in nearby productive zones. Thus, it is evident
that the utilization of longer horizontal wells enhances
operational effectiveness in low-permeability reservoirs.
When Lw=600 ft, the well reaches its maximum length
for the tested cases. Its greater extent enables even more
effective drainage, leading to the highest gas flow rate
and cumulative production among the evaluated scenar-
ios.

✵ ✶✵ ✷✵ ✸✵ ✹✵ ✺✵ ✻✵ ✼✵ ✽✵ ✾✵

✵✿✺

✶

✶✿✺

✷

✷✿✺

✁✶✵�

t ✂✄☎

◗
❣
✆
✝
✞
✟✠
✡
☛

▲✇☞✌✍✍ ✎✏ ▲✇☞✑✍✍ ✎✏ ▲✇☞✒✍✍ ✎✏

Figure 13: Effect of horizontal well length variation (Case 2):
gas flow rate.

The gas flow rate and cumulative production curves
for varying porosity values (ϕ=0.05, 0.07 (reference
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Figure 14: Effect of horizontal well length variation (Case 2):
cumulative gas production.

case), and 0.09) are presented in Figures 15 and 16, re-
spectively. It is evident that increasing porosity leads to
a higher gas flow rate, as both the storage capacity and
transport capability of the gas are directly influenced by
this property. A greater porosity value corresponds to a
larger volume of gas available for flow.
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Figure 15: Impact of porosity variation (Case 2): gas flow
rate.

For ϕ=0.05, the flow rate is the lowest due to the
reduced storage capacity of the reservoir. In the inter-
mediate case (ϕ=0.07), an increase in flow rate is ob-
served, demonstrating the positive impact of enhanced
porosity. Finally, for ϕ=0.09, the flow rate is the highest,
being more pronounced in the initial stages and gradu-
ally declining over time. The cumulative gas production
follows the same trend observed for the flow rate. The
highest porosity (ϕ=0.09) results in superior cumulative
production, owing to the larger volume of gas stored and
available for production. Over time, the difference be-
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Figure 16: Impact of porosity variation (Case 2): cumulative
gas production.

tween the cases becomes more distinct, as the greater
storage capacity allows for more sustained production.
Conversely, with ϕ=0.05, the cumulative production is
the lowest, limited by the smaller gas volume present in
the reservoir. Regarding ϕ=0.07, an intermediate cumu-
lative production is observed.

Figures 17 and 18 present the analysis of absolute
permeability (k0) for gas flow rate and cumulative pro-
duction, respectively, considering three permeability val-
ues.
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Figure 17: Impact of absolute permeability variation on pro-
duction (Case 2): gas flow rate.

As the absolute permeability value increases, the ini-
tial and final values of both flow rate and cumulative pro-
duction also increase. For k0=5 ×10−7 Darcy, the initial
flow rate is higher, and the decline is slower over time,
whereas for k0= 1 ×10−7 Darcy, it is the lowest, indi-
cating greater resistance to gas flow within the reservoir.
The cumulative volume produced exhibits similar behav-
ior, as the increase in permeability results in its faster
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Figure 18: Impact of absolute permeability variation on pro-
duction (Case 2): cumulative gas production.

growth due to the enhanced ease of fluid flow within the
porous medium as a consequence of its increase.

5 Conclusion

This work presented numerical simulations aimed at in-
vestigating production in low-permeability natural gas
reservoirs under two-phase water-gas flow, considering
the effects of gas slippage and permeability correction
due to effective stress variation. The formulation, based
on the Picard-Newton method, successfully captured the
typical curves for gas flow rate and cumulative produc-
tion. It is understood that a quantitative evaluation ne-
cessitates a comparison with other results derived from
different numerical simulators, experimental data, or an-
alytical solutions for specific cases. Increasing the coef-
ficient b resulted in an enhancement of apparent perme-
ability, demonstrating its relevance in low-permeability
reservoirs. Consequently, increases in gas flow rates and
cumulative production were observed.

Elevating the modulus γ intensified the effects of
porous matrix compaction, leading to a decrease in per-
meability and consequently restricting gas mass flow and
negatively impacting cumulative production. As its val-
ues were increased, the apparent permeability reduction
became more pronounced with declining reservoir pres-
sure. Enhancing porosity exhibited a direct correlation
with increased gas flow rate and cumulative production.
Higher porosity values lead to a greater gas storage ca-
pacity within the reservoir, resulting in improved recov-
ery over time. Regarding the transport capacity through
the porous medium, the effect of increasing porosity val-
ues is the inverse of that observed with increasing ab-
solute permeability. Concerning absolute permeability,
higher values correspond to lower flow resistance. As a
consequence, a higher initial flow rate and a slower de-
cline were obtained, yielding a larger cumulative gas vol-
ume.

In low-permeability reservoirs, the limitations im-
posed on flow are significant, thus emphasizing the ne-
cessity of employing stimulation techniques to enhance
apparent permeability and enable production. In this re-
gard, increasing the length of the horizontal well facili-
tated a larger contact area with the porous matrix, im-
plying an increase in both gas flow rate and cumulative
production. Finally, this study highlights the importance
of incorporating accurate models for simulating opera-
tional strategies to improve reservoir management.
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